Contenidos
La media ponderada (también conocida como media aritmética ponderada) en
Este artículo puede ser demasiado técnico para la mayoría de los lectores. Por favor, ayude a mejorarlo para que sea comprensible para los no expertos, sin eliminar los detalles técnicos. (Marzo 2021) (Aprende cómo y cuándo eliminar este mensaje de la plantilla)
Este artículo puede dar un peso excesivo a ciertas ideas, incidentes o controversias. Por favor, ayuda a mejorarlo reescribiendo de forma equilibrada y contextualizando los diferentes puntos de vista. (Marzo 2021) (Aprende cómo y cuándo eliminar este mensaje de la plantilla)
El proceso de ponderación consiste en destacar la contribución de determinados aspectos de un fenómeno (o de un conjunto de datos) por encima de otros a un resultado o consecuencia, resaltando así esos aspectos en comparación con otros en el análisis. Es decir, en lugar de que cada variable del conjunto de datos contribuya por igual al resultado final, algunos de los datos se ajustan para que contribuyan más que otros. Esto es análogo a la práctica de añadir peso (extra) a un lado de una balanza para favorecer al comprador o al vendedor.
¿Qué significa la ponderación en los exámenes?
Definición de pesoEl peso se define como la medida de lo que pesa un objeto. Los pesos no pueden ser negativos. Algunos pesos pueden ser cero, pero no todos, ya que no se permite la división por cero. Los elementos de datos que tienen un peso alto contribuirán más a la media ponderada en comparación con los elementos con un peso bajo.
¿Qué es la media ponderada? Para calcular la media ponderada de ciertos datos, tenemos que multiplicar el peso asociado a un determinado suceso o resultado con su resultado asociado y, finalmente, sumar todos los productos. Es muy útil para calcular un resultado teóricamente esperado. Además de la media ponderada y la media aritmética, existen varios tipos de medias como la media armónica, la media geométrica, etc.
Definir la media ponderadaLa media ponderada se define como un promedio calculado dando diferentes pesos a algunos de los valores individuales. Cuando todos los pesos son iguales, la media ponderada es similar a la media aritmética. Para calcular la media ponderada para un rango de valores dado, se utiliza una herramienta online gratuita llamada calculadora de medias ponderadas.
Cómo hallar la media ponderada y el promedio ponderado en
La media ponderada es un cálculo que tiene en cuenta los diferentes grados de importancia de los números de un conjunto de datos. Al calcular una media ponderada, cada número del conjunto de datos se multiplica por un peso predeterminado antes de realizar el cálculo final.
En el cálculo de una media simple, o media aritmética, todos los números se tratan por igual y se les asigna el mismo peso. Pero una media ponderada asigna pesos que determinan de antemano la importancia relativa de cada punto de datos.
Una media ponderada suele calcularse para igualar la frecuencia de los valores de un conjunto de datos. Por ejemplo, una encuesta puede reunir suficientes respuestas de cada grupo de edad para ser considerada estadísticamente válida, pero el grupo de 18 a 34 años puede tener menos encuestados que todos los demás en relación con su proporción de la población. El equipo de la encuesta puede ponderar los resultados del grupo de 18 a 34 años para que sus opiniones estén representadas proporcionalmente.
Sin embargo, los valores de un conjunto de datos pueden ser ponderados por otras razones que la frecuencia de aparición. Por ejemplo, si se califica a los alumnos de una clase de baile por su destreza, su asistencia y sus modales, la calificación de la destreza puede tener más peso que los demás factores.
Sinónimo de ponderación
Históricamente, las encuestas de opinión pública se han basado en la capacidad de ajustar sus conjuntos de datos utilizando un conjunto básico de datos demográficos – sexo, edad, raza y etnia, nivel educativo y región geográfica – para corregir cualquier desequilibrio entre la muestra de la encuesta y la población. Todas estas variables están correlacionadas con una amplia gama de actitudes y comportamientos de interés para los investigadores de encuestas. Además, se miden bien en las grandes encuestas gubernamentales de alta calidad, como la Encuesta sobre la Comunidad Estadounidense (ACS), realizada por la Oficina del Censo de EE.UU., lo que significa que se dispone de puntos de referencia fiables para la población.
Pero, ¿son suficientes para reducir el sesgo de selección6 en las encuestas de inclusión en línea? Dos estudios que compararon las estimaciones ponderadas y no ponderadas de las muestras de participación en línea descubrieron que, en muchos casos, la ponderación demográfica sólo reducía mínimamente el sesgo y, en algunos casos, lo empeoraba.7 En un estudio anterior del Pew Research Center en el que se comparaban las estimaciones de nueve muestras de participación en línea diferentes y el Panel de Tendencias Americanas basado en probabilidades, la muestra que mostraba el menor sesgo medio en 20 puntos de referencia (Muestra I) utilizaba una serie de variables en su procedimiento de ponderación que iban más allá de los datos demográficos básicos, e incluía factores como la frecuencia de uso de Internet, el registro de votantes, la identificación con el partido y la ideología.8 La Muestra I también empleaba un proceso estadístico más complejo que incluía tres etapas: emparejamiento, seguido de un ajuste de la propensión y, por último, un rastrillaje (las técnicas se describen en detalle más adelante).